Inexact Newton Methods and Mixed Nonlinear Complementary Problems

نویسندگان

  • Luca Bergamaschi
  • Giovanni Zilli
چکیده

In this paper we present the results obtained in the solution of sparse and large systems of nonlinear equations by Inexact Newton-like methods [6]. The linearized systems are solved with two preconditioners particularly suited for parallel computation. We report the results for the solution of some nonlinear problems on the CRAY T3E under the MPI environment. Our methods may be used to solve more general problems. Due to the presence of a logarithmic penalty, the interior point solution [10] of a nonlinear mixed complementary problem [7] can indeed be viewed as a variant of an Inexact Newton method applied to a particular system of nonlinear equations. We have applied this inexact interior point algorithm for the solution of some nonlinear complementary problems. We provide numerical results in both sequential and parallel implementations. 1 The Inexact Newton-Cimmino method Consider the system on nonlinear equations G(x) = 0 G = (g1, ..., gn) T (1) where G : R → R is a nonlinear C function, and its Jacobian matrix J(x). For solving (1) we use an iterative procedure which combines a Newton and a Quasi-Newton method with a row-projection (or row-action) linear solver of Cimmino type [11], particularly suited for parallel computation. Here below, referring to block Cimmino method, we give the general lines of this procedure. Let As = b be the linearized system to be solved. Let us partition A into p row-blocks: Ai, i = 1, . . . , p, i.e. A T = [A1, A2, . . . , Ap] and partition the vector b conformally. Then the original system is premultiplied (preconditioning) by Hp = [A + 1 , . . . , A + i , . . . , A + p ] (2) where A+i = A T i (AiA T i ) −1 is the Moore-Penrose pseudo inverse of Ai. We obtain the equivalent system HpAs = Hpb, (P1 + · · ·+ Pp)s = p

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global and Superlinear Convergence of Inexact Uzawa Methods for Saddle Point Problems with Nondiierentiable Mappings

This paper investigates inexact Uzawa methods for nonlinear saddle point problems. We prove that the inexact Uzawa method converges globally and superlinearly even if the derivative of the nonlinear mapping does not exist. We show that the Newton-type decomposition method for saddle point problems is a special case of a Newton-Uzawa method. We discuss applications of inexact Uzawa methods to se...

متن کامل

Parallel Inexact Newton and Interior Point Method

In this paper we present the results obtained in the solution of sparse and large systems of non-linear equations by inexact Newton methods combined with an block iterative row-projection linear solver of Cimmino-type. Moreover, we propose a suitable partitioning of the Jacobian matrix A. In view of the sparsity, we obtain a mutually orthogonal row-partition of A that allows a simple solution o...

متن کامل

Local path-following property of inexact interior methods in nonlinear programming

Abstract. We study the local behavior of a primal-dual inexact interior point methods for solving nonlinear systems arising from the solution of nonlinear optimization problems or more generally from nonlinear complementarity problems. The algorithm is based on the Newton method applied to a sequence of perturbed systems that follows by perturbation of the complementarity equations of the origi...

متن کامل

Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations

Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general framework that includes many well-known techniques for solving linear and nonlinear systems, as well as new...

متن کامل

Jacobian Smoothing Inexact Newton Method for Ncp with a Special Choice of Forcing Parameters

The inexact Newton method with a special choice of forcing parameters is proposed for solving nonlinear complementarity problems. This method belongs to the class of Jacobian smoothing methods. Linear system is solved approximately in every iteration. The sequence of forcing terms controls the accuracy level of the approximate solution and influences the behavior of the method. Globalization st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000